July, 2020

1. Prove the following statements for all $n \in N$ (set of all natural numbers) by Principle of Mathematical Induction -
a. $1+2+3+\cdots \ldots \ldots \ldots \ldots \ldots \ldots+n=\frac{n(n+1)}{2}$
b. $1^{2}+2^{2}+3^{2}+\cdots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
c. $1^{3}+2^{3}+3^{3}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$
2. By Principle of Mathematical Induction prove that -
a. $\quad \sum_{t=1}^{n-1} t(t+1)=\frac{n(n-1)(n+1)}{3}$ for all natural numbers $n \geq 2$
b. $\quad\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\left(1-\frac{1}{n^{2}}\right)=\frac{n(n+1)}{2 n}$ for all natural numbers $n \geq 2$
3. Problems on divisibility:
i. Prove by Principle of Mathematical Induction that $2^{2 n}-1$ is divisible by 3 .
ii. Prove by Principle of Mathematical Induction that $5^{2 n+1}+2^{2 n+1}$ is divisible by 7 for all integers $n \geq 0$.
4. Prove that $2 n+1<2^{n}$ for all natural numbers $n \geq 3$ by Principle of Mathematical Induction.
5. Use the Principle of Mathematical Induction to verify that, for n any positive integer, $6^{n}-1$ is divisible by 5 .
6. Use Principle of Mathematical Induction to verify that, for n any positive integer, the sum of the squares of the first $2 n$ positive integers is given by the formula -
$1^{2}+2^{2}+3^{2}+\cdots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots+(2 n)^{2}=\frac{2 n(2 n+1)(4 n+1)}{6}=\frac{n(2 n+1)(4 n+1)}{3}$.
7. Let $x \neq 0$ be a real number such that $x+x^{-1} \in Z$. Prove that for all $n \in Z, x^{n}+x^{-n} \in Z$.
8. Let the polar representation of a non - zero complex number $z=r(\cos \theta+i \sin \theta)$ where $r=|z|$ and $\theta=\arg (z)$. Prove that $z^{n}=r^{n}(\cos (n \theta)+i \sin (n \theta)), \forall n \in Z$ by Principle of Mathematical Induction.

RECURSION

9. Let $a_{0}=0$ and $a_{n}=2 a_{n-1}+n$ whenever $n \geq 1$. Show that $a_{n}=2^{n+1}-n-2$.
10. Let $a_{0}=0, a_{1}=1$ and $a_{n+2}=\frac{1}{4}\left(a_{n+1}^{2}+a_{n}+2\right)$ whenever $n \geq 0$. Show that $0 \leq a_{n} \leq 1$ for integers $n \geq 0$.
11. Let $a_{0}=1$ and $a_{n}=\sum_{i=0}^{n-1} a_{i}$. Prove that for all $n \geq 1$, we have $a_{n}=2^{n-1}$.
12. Define the sequence $a=\left\{a_{n}\right\}$ as follows $a_{1}=2, a_{n}=5 a_{n-1}, \forall n \geq 2$. Write down the first four terms of the sequence and by Principle of Mathematical Induction prove that $a_{n}=2.5^{n-1}$ for all natural numbers.
13. The distributive law from algebra says that, for all real numbers c, a_{1}, a_{2} we have $c\left(a_{1}+a_{2}\right)=c a_{1}+$ $c a_{2}$. Use this law and Principle of Mathematical Induction prove that for all natural numbers $n \geq 2$, if $c, a_{1}, a_{2}, \ldots \ldots \ldots \ldots, a_{n}$ are any real numbers, then $c .\left(a_{1}+a_{2}+a_{3}+\ldots \ldots \ldots \ldots \ldots+a_{n}\right)=c a_{1}+$ c. $a_{2}+$ c. $a_{3}+\cdots \ldots \ldots \ldots \ldots \ldots+$ c. a_{n}.
14. Prove by Principle of Mathematical Induction that for all natural numbers $n, \sin \alpha+\sin (\alpha+\beta)+$ $\sin (\alpha+2 \beta)+\cdots \ldots \ldots \ldots \ldots \ldots+\sin (\alpha+(n-1) \beta)=\frac{\sin \left(\alpha+\frac{n-1}{2} \beta\right) \sin \frac{n \beta}{2}}{\sin \frac{\beta}{2}}$.
15. Consider the sequence of real numbers defined by the recursive relations $x_{1}=1$, and $x_{n}=\sqrt{\left(1+2 x_{n-1}\right)}$, for natural numbers $n \geq 2$. Use Principle of Mathematical Induction to show that $x_{n}<4$, for all natural numbers $n \geq 1$.
16. Let $p_{o}=1, p_{1}=\cos \theta$ (θ is some fixed constant) and $p_{n+1}=2 p_{1} p_{n}-p_{n-1}, \forall n \geq 1$. Use an extended Principle of Mathematical Induction to show that $p_{n}=\cos (n \theta)$ for all $n \geq 0$.
17. Consider the famous Fibonacci sequence $x=\left\{x_{n}\right\}$, defined by the relations $x_{1}=1, x_{2}=1$ and $x_{n}=$ $x_{n-1}+x_{n-2}$, for all natural numbers $n \geq 3$.
a. Compute x_{20}.
b. Use an extended Principle of Mathematical Induction to prove that $x_{n}=\frac{1}{\sqrt{5}}\left\{\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right\}$ for all $n \geq 1$.
18. Let $a_{1}=1, a_{2}=8$ and $a_{n}=a_{n-1}+2 . a_{n-2}$ whenever $n \geq 2$. Using Principle of Mathematical Induction to show that for all $n \geq 1, a_{n}=3.2^{n-1}+2 .(-1)^{n}$.
19. Define the matrix A below and show the formula for A^{n} :
$A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right), A^{n}=\left(\begin{array}{cc}f_{n+1} & f_{n} \\ f_{n} & f_{n-1}\end{array}\right)$, where $\left(f_{j}\right)$ are the Fibonacci numbers.
20. Prove the Binomial theorem by Principle of Mathematical Induction. This states that for all $n \geq 1$, $(x+y)^{n}=\sum_{r=0}^{n}\binom{n}{r} x^{n-r} y^{r}$.
