July, 2020

- **01.** Prove the following statements for all $n \in N$ (set of all natural numbers) by Principle of Mathematical Induction
 - a. $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$
 - b. $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$

c. $1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$

- 02. By Principle of Mathematical Induction prove that
 - a. $\sum_{t=1}^{n-1} t(t+1) = \frac{n(n-1)(n+1)}{2}$ for all natural numbers $n \ge 2$
- 03. Problems on divisibility:
 - Prove by Principle of Mathematical Induction that $2^{2n} 1$ is divisible by 3. i.
 - Prove by Principle of Mathematical Induction that $5^{2n+1} + 2^{2n+1}$ is divisible by 7 for all ii. integers $n \ge 0$.
- 04. Prove that $2n + 1 < 2^n$ for all natural numbers $n \ge 3$ by Principle of Mathematical Induction.
- 05. Use the Principle of Mathematical Induction to verify that, for n any positive integer, $6^n 1$ is divisible by 5.
- 06. Use Principle of Mathematical Induction to verify that, for n any positive integer, the sum of the squares of the first 2n positive integers is given by the formula –

 $1^{2} + 2^{2} + 3^{2} + \dots + (2n)^{2} = \frac{2n(2n+1)(4n+1)}{6} = \frac{n(2n+1)(4n+1)}{2}$

- 07. Let $x \neq 0$ be a real number such that $x + x^{-1} \in Z$. Prove that for all $n \in Z$, $x^n + x^{-n} \in Z$.
- 08. Let the polar representation of a non zero complex number $z = r(\cos \theta + i \sin \theta)$ where r = |z| and $\theta = arg(z)$. Prove that $z^n = r^n(\cos(n\theta) + i\sin(n\theta)), \forall n \in Z$ by Principle of Mathematical Induction. $\langle V \rangle$

RECURSION

- **09.** Let $a_0 = 0$ and $a_n = 2a_{n-1} + n$ whenever $n \ge 1$. Show that $a_n = 2^{n+1} n 2$.
- 10. Let $a_0 = 0, a_1 = 1$ and $a_{n+2} = \frac{1}{4}(a_{n+1}^2 + a_n + 2)$ whenever $n \ge 0$. Show that $0 \le a_n \le 1$ for integers $n \ge 0$.
- 11. Let $a_0 = 1$ and $a_n = \sum_{i=0}^{n-1} a_i$. Prove that for all $n \ge 1$, we have $a_n = 2^{n-1}$.
- 12. Define the sequence $a = \{a_n\}$ as follows $a_1 = 2, a_n = 5a_{n-1}, \forall n \ge 2$. Write down the first four terms of the sequence and by Principle of Mathematical Induction prove that $a_n = 2.5^{n-1}$ for all natural numbers.
- 13. The distributive law from algebra says that, for all real numbers c, a_1, a_2 we have $c(a_1 + a_2) = ca_1 + ca_2$ ca_2 . Use this law and Principle of Mathematical Induction prove that for all natural numbers $n \ge 2$, if $c, a_1, a_2, \dots, \dots, a_n$ are any real numbers, then $c. (a_1 + a_2 + a_3 + \dots + a_n) = ca_1 + ca_1 + ca_2 + a_2 + ca_3 + \dots + ca_n$ $c.a_2 + c.a_3 + \cdots \dots \dots \dots \dots + c.a_n$.

- 14. Prove by Principle of Mathematical Induction that for all natural numbers n, $\sin \alpha + \sin(\alpha + \beta) + \sin(\alpha + 2\beta) + \cdots + \sin(\alpha + (n-1)\beta) = \frac{\sin(\alpha + \frac{n-1}{2}\beta)\sin\frac{n\beta}{2}}{\sin\frac{\beta}{2}}$.
- 15. Consider the sequence of real numbers defined by the recursive relations x₁ = 1, and x_n = √(1 + 2x_{n-1}), for natural numbers n ≥ 2. Use Principle of Mathematical Induction to show that x_n < 4, for all natural numbers n ≥ 1.
- 16. Let $p_o = 1$, $p_1 = \cos \theta$ (θ is some fixed constant) and $p_{n+1} = 2p_1p_n p_{n-1}$, $\forall n \ge 1$. Use an extended Principle of Mathematical Induction to show that $p_n = \cos(n\theta)$ for all $n \ge 0$.
- 17. Consider the famous Fibonacci sequence $x = \{x_n\}$, defined by the relations $x_1 = 1, x_2 = 1$ and $x_n = x_{n-1} + x_{n-2}$, for all natural numbers $n \ge 3$.
 - a. Compute x_{20} .
 - b. Use an extended Principle of Mathematical Induction to prove that $x_n = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2}\right)^n \left(\frac{1-\sqrt{5}}{2}\right)^n \right\}$ for all $n \ge 1$.
- 18. Let $a_1 = 1, a_2 = 8$ and $a_n = a_{n-1} + 2, a_{n-2}$ whenever $n \ge 2$. Using Principle of Mathematical Induction to show that for all $n \ge 1, a_n = 3, 2^{n-1} + 2, (-1)^n$.
- 19. Define the matrix A below and show the formula for A^n :

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, A^n = \begin{pmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{pmatrix}, \text{ where } (f_j) \text{ are the Fibonacci numbers.}$$

20. Prove the Binomial theorem by Principle of Mathematical Induction. This states that for all $n \ge 1$, $(x + y)^n = \sum_{r=0}^n {n \choose r} x^{n-r} y^r$.
